Chapter 3

Perpendicular and Parallel Lines

Section 3
 Parallel Lines and Transversals

GOAL 1: Properties of Parallel Lines

In the activity of page 142, you may have discovered the following results.

POSTULATE

postulate 15 Corresponding Angles Postulate

If two parallel lines are cut by a transversal, then the pairs of corresponding angles are congruent.

THEOREMS ABOUT PARALLEL LINES

theorem 3.4 Alternate Interior Angles
If two parallel lines are cut by a transversal, then the pairs of alternate interior angles are congruent.
(same-side)
theorem 3.5 Consecutive Interior Angles
If two parallel lines are cut by a transversal, then the pairs of consecutive interior angles are supplementary.
theorem 3.6 Alternate Exterior Angles If two parallel lines are cut by a transversal, then the pairs of alternate exterior angles are congruent.
theorem 3.7 Perpendicular Transversal If a transversal is perpendicular to one of two parallel lines, then it is perpendicular to the other.

$$
m \angle 5+m \angle 6=180^{\circ}
$$

Example 1: Proving the Alternate Interior Angles Theorem

Prove the Alternate Interior Angles Theorem.
Given: p || q
Prove: <1 cong. <2

Statements
$1-\mathrm{p}| | q$
$2-<1$ cong. <3
$3-<3$ cong. <2
$4-<1$ cong. <2

Reasons

Given
Corr. <'s Postulate (Postulate 15)
Vertical Angles Theorem
Transitive

Example 2: Using Properties of Parallel Lines

Given that $\mathrm{m}<5=65^{\circ}$, find each measure. Tell which postulate or theorem you use.
a. $m<6=65^{*}$ (Vertical Angles Theorem)
b. $m<7=180-65=115^{*}$ (Linear Pair Postulate)
c. $\mathrm{m}<8=65^{*}$ (Alt. Ext. $\mathrm{w} /<6$ OR Corresponding $\mathrm{w} /<5$)
d. $m<9=115^{*}$ (Alt. Ext. $w /<7$ OR Linear Pair $w /<8$)

Example 3: Classifying Leaves

Botany: Some plants are classified by the arrangement of the veins in their leaves. In the diagram of the leaf, $j \| k$. What is $m<1$?

SSI \rightarrow supplementary \rightarrow 180-120 $=60$

$$
m<1=60^{*}
$$

GOAL 2: Properties of Special Pairs of Angles
Example 4: Using Properties of Parallel Lines

Use properties of parallel lines to find the value of x.

$$
\begin{gathered}
x+15=55 \\
x=40
\end{gathered}
$$

(2)

$$
\begin{gathered}
125+x+15=180 \\
x+140=180 \\
x=40
\end{gathered}
$$

Example 5: Estimating Earth's Circumference

History Connection Eratosthenes was a Greek scholar. Over 2000 years ago, he estimated Earth's circumference by using the fact that the Sun's rays are parallel.
Eratosthenes chose a day when the Sun shone exactly down a vertical well in Syene at noon. On that day, he measured the angle the Sun's rays made with a vertical stick in Alexandria at noon. He discovered that

$$
m \angle 2 \approx \frac{1}{50} \text { of a circle. }
$$

By using properties of parallel lines, he knew that $m \angle 1=m \angle 2$. So he reasoned that

$$
m \angle 1 \approx \frac{1}{50} \text { of a circle. }
$$

At the time, the distance from Syene to Alexandria was believed to be 575 miles.

$$
\begin{aligned}
\frac{1}{50} \text { of a circle } & \approx \frac{575 \text { miles }}{\text { Earth's circumference }} \\
\text { Earth's circumference } & \approx \mathbf{5 0 (5 7 5} \text { miles }) \longleftarrow \text { Use cross product property. } \\
& \approx 29,000 \text { miles }
\end{aligned}
$$

How did Eratosthenes know that $m \angle 1=m \angle 2$?

